AI-Pr-Ti (Aluminum-Praseodymium-Titanium)

V. Raghavan

Recently, [2000Zho] determined an isothermal section for this ternary system at $500^{\circ} \mathrm{C}$.

Binary Systems

The Al-Pr [2000Oka] depicts six intermediate compounds of fixed stoichiometry: $\mathrm{Pr}_{3} \mathrm{Al}_{11}$ (orthorhombic or tetragonal), $\operatorname{PrAl}_{3}\left(\mathrm{Ni}_{3} \mathrm{Sn}\right.$-type hexagonal), $\mathrm{PrAl}_{2}\left(\mathrm{MgCu}_{2}-\right.$ type cubic), PrAl (orthorhombic), $\mathrm{Pr}_{2} \mathrm{Al}\left(\mathrm{Co}_{2} \mathrm{Si}\right.$-type orthorhombic), and $\mathrm{Pr}_{3} \mathrm{Al}$ (low-temperature form: $\mathrm{Ni}_{3} \mathrm{Sn}$-type hexagonal and high-temperature form: AuCu_{3}-type cubic). An update of the Al-Ti system appears in this issue. The $\mathrm{Pr}-\mathrm{Ti}$ phase diagram [Massalski2] has no intermediate phases.

Isothermal Section

With starting metals of 99.9% purity, [2000Zho] melted 181 alloy compositions in an arc furnace under Ar atm.

After a final anneal at $500^{\circ} \mathrm{C}$ for 10 days, the samples were quenched in ice-water mixture. The phase equilibria were studied mainly by x-ray powder diffraction technique. The isothermal section at $500^{\circ} \mathrm{C}$ constructed by [2000Zho] is redrawn in Fig. 1 to agree with the accepted binary data. Among the binary compounds, only $\mathrm{Al}_{2} \mathrm{Pr}$ shows a significant solubility for the third component (17 at.\% Ti). An Al-rich ternary compound $\mathrm{PrTi}_{2} \mathrm{Al}_{20}$ [1995Nie] (denoted τ here) is present. It has the $\mathrm{CeCr}_{2} \mathrm{Al}_{20}$-type cubic structure, space group $F d 3$ or $F d 3 m, a=1.4724 \mathrm{~nm}$.

References

1995Nie: S. Niemann and W. Jeitschko, Ternary Aluminides $\mathrm{AT}_{2} \mathrm{Al}_{20}$ (A $=$ Rare-Earth Elements and Uranium; $\mathrm{T}=\mathrm{Ti}, \mathrm{Nb}$, Ta , Mo, and W) with $\mathrm{CeCr}_{2} \mathrm{Al}_{20}$ type Structure, J. Solid State Chem., Vol 114, 1995, p 337-341
2000Oka: H. Okamoto, Al-Pr (Aluminum-Praseodymium), J. Phase Equilibria, Vol 21 (No. 2), 2000, p 207

2000Zho: H. Zhou, J. Yan, Y. Zhang, and J. Zeng, Phase Relation in the Pr-Ti-Al Ternary System at $500^{\circ} \mathrm{C}$, J. Alloys Compd., Vol 299 (No. 1-2), 2000, p 232-234

Fig. 1 Al-Pr-Ti isothermal section at $500^{\circ} \mathrm{C}$ [2000Zho]; narrow two-phase regions around tie-triangles are omitted.

